Decomposition of finite-valued streaming string transducers

Paul Gallot Anca Muscholl <u>Gabriele Puppis</u> Sylvain Salvati

Transductions

Transformations of objects, here words

transduction = function or relation between words

Transductions

Transformations of objects, here words

transduction = function or relation between words

hannover	 {hannover}*	Kleene iteration
hannover	 revonnah	mirror
hannover	 hannoverhannover	duplicate
hannover	 overhann	split & swap

Transductions defined by formulas

MSOT = monadic second-order transductions [Courcelle '95]

Logically define the output inside copies of the input:

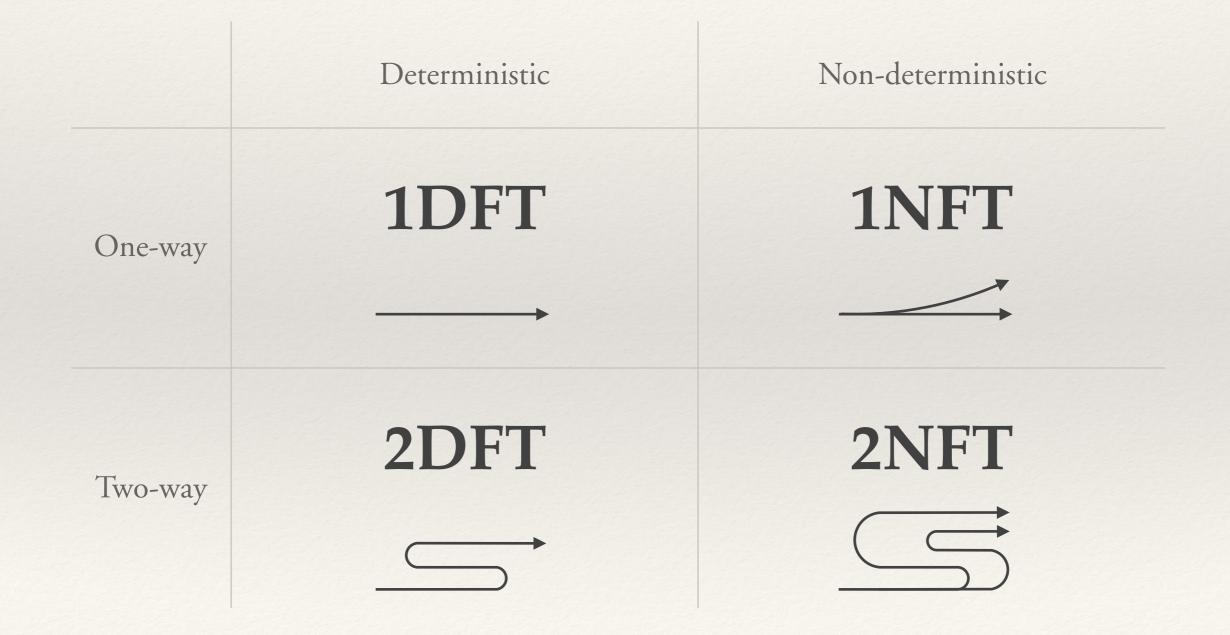
- * domain: unary formula selecting positions in each copy
- * order: binary formula defining an order on the domain
- * letters: unary formulas partitioning the domain

hannover ----- revonnah

mirror

 $\varphi_{<}(x,y) = x > y$ // x < y in the output iff x > y in the input

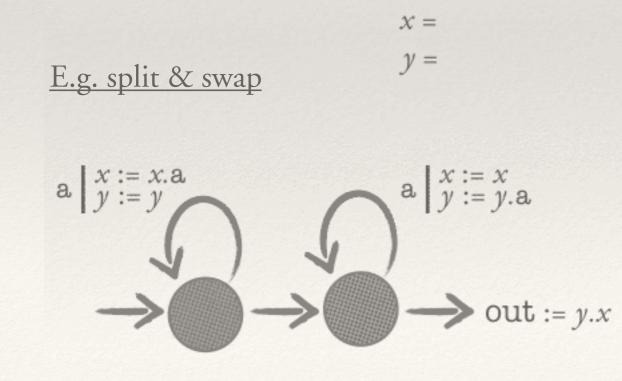
Finite-state Transducers = automata with outputs on transitions



SST = Streaming String Transducers

[Alur, Cerny '10]

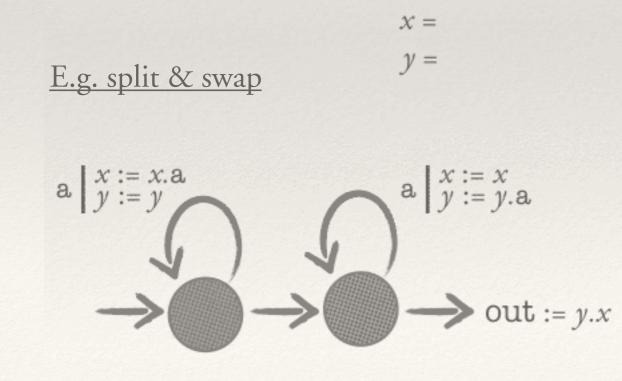
- deterministic / non-deterministic
- * 1-way
- * write-only registers to store partial outputs
 + copyless restriction = each register used at most once



SST = Streaming String Transducers

[Alur, Cerny '10]

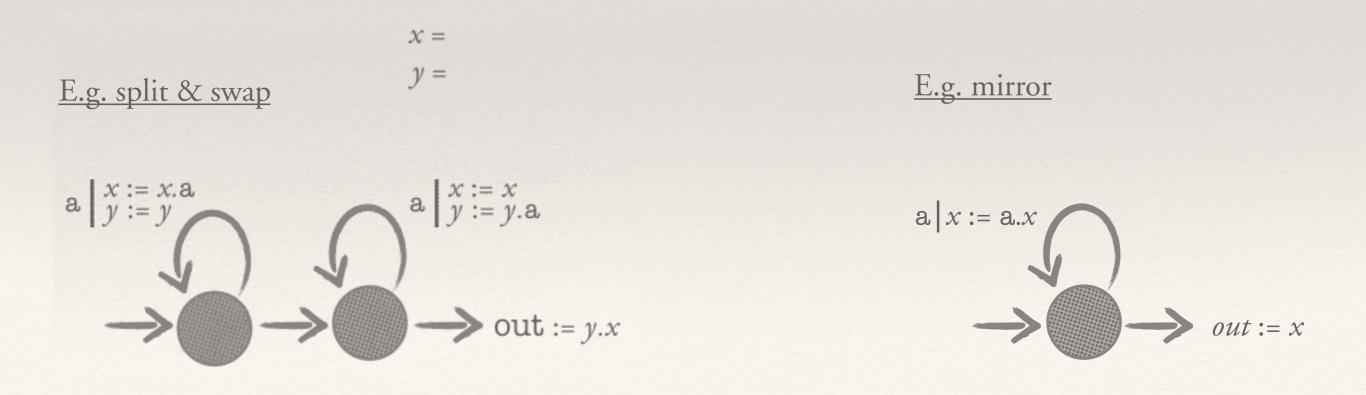
- deterministic / non-deterministic
- * 1-way
- * write-only registers to store partial outputs
 + copyless restriction = each register used at most once



SST = Streaming String Transducers

[Alur, Cerny '10]

- deterministic / non-deterministic
- ✤ 1-way
- write-only registers to store partial outputs
 + copyless restriction = each register used at most once

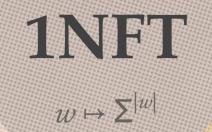


Relational transductions

1DFT 2DFT = DSST = MSOT

 $a w \mapsto w a$

 $w \mapsto ww$



 $w \mapsto w^*$

 $uv \mapsto vu$

NSST = NMSOT

Relational transductions

1DFT2DFT = DSST = MSOT $aw \mapsto wa$ $w \mapsto ww$

decidable equivalence undecidable equivalence



 $uv \mapsto vu$

NSST = NMSOT

1DFT2DFT = DSST = MSOTaw $\mapsto wa$ $w \mapsto ww$ II1NFTNSST = NMSOT = 2NFT

 $w a \mapsto a w$

decidable equivalence undecidable equivalence

1DFT2DFT = DSST = MSOTaw + waw + wwII1NFTNSST = NMSOT = 2NFT

 $w a \mapsto a w$

decidable equivalence undecidable equivalence

Anything interesting beyond functional transductions?

k-valued transductions = at most k outputs for each input

- * decidable equivalence?
- * correspondence with logic (e.g. MSO) ?
- * equivalent models (e.g. 2-way vs SSTs) ?
- * effective characterisations (e.g. 1-way definability) ?

k-valued transductions = at most k outputs for each input

- * decidable equivalence?
- * correspondence with logic (e.g. MSO) ?
- * equivalent models (e.g. 2-way vs SSTs) ?
- * effective characterisations (e.g. 1-way definability) ?

a unifying approach: Decomposition Theorem

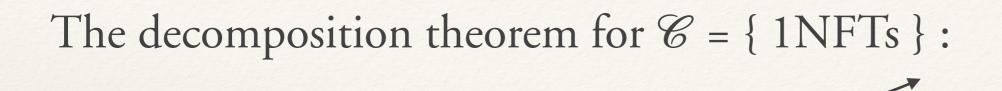
For a suitable class C of transducers: "Every k-valued transducer $\in \mathscr{C}$ can be decomposed into a finite union of functional transducers $\in \mathscr{C}$ "

Decomposition of 1-way transducers

Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber '96, Sakarovitch - de Souza '08]

Decomposition of 1-way transducers



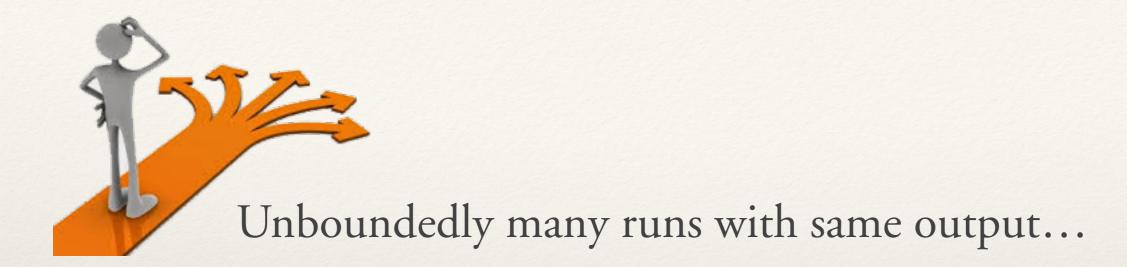
Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber '96, Sakarovitch - de Souza '08]

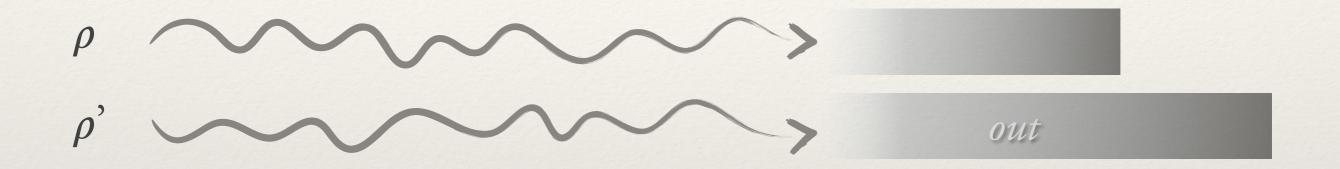
Corollaries:

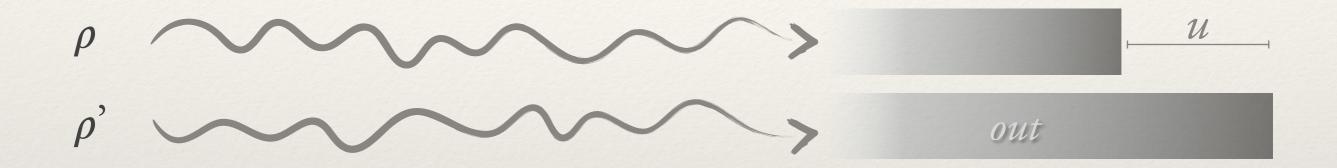
- decidable equivalence of k-valued 1NFTs
- * k-valued 1NFTs = k-valued order-preserving MSO transductions

Decomposition of 1NFTs

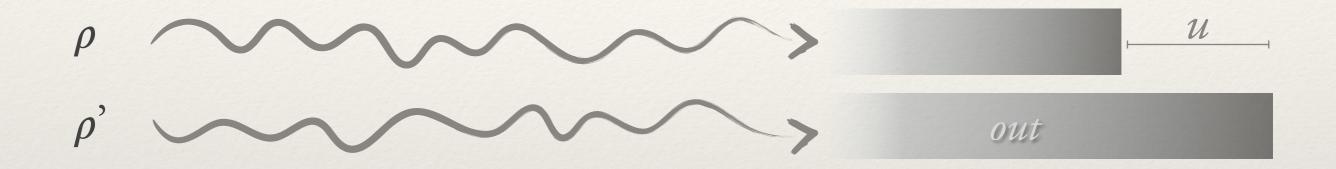


Follow lexico.-least run for each output



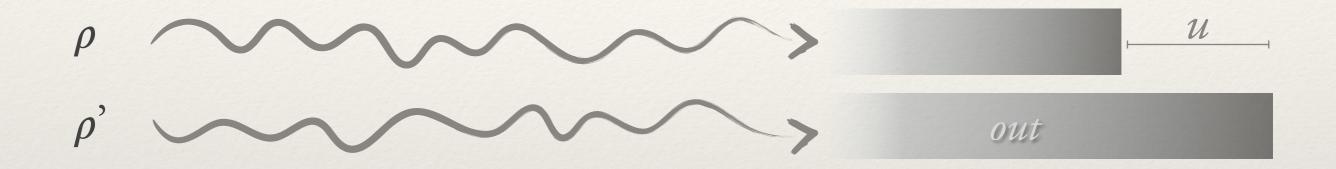


$$align(\rho,\rho') = \begin{cases} (u,\varepsilon) : out(\rho) . u = out(\rho') \\ (\varepsilon,v) : out(\rho) = out(\rho') . v \end{cases}$$



$$align(\rho,\rho') = \begin{cases} (u,\varepsilon) : out(\rho) . u = out(\rho') \\ (\varepsilon,v) : out(\rho) = out(\rho') . v \end{cases}$$

 $lag(\rho,\rho') = |align(\rho,\rho')|$



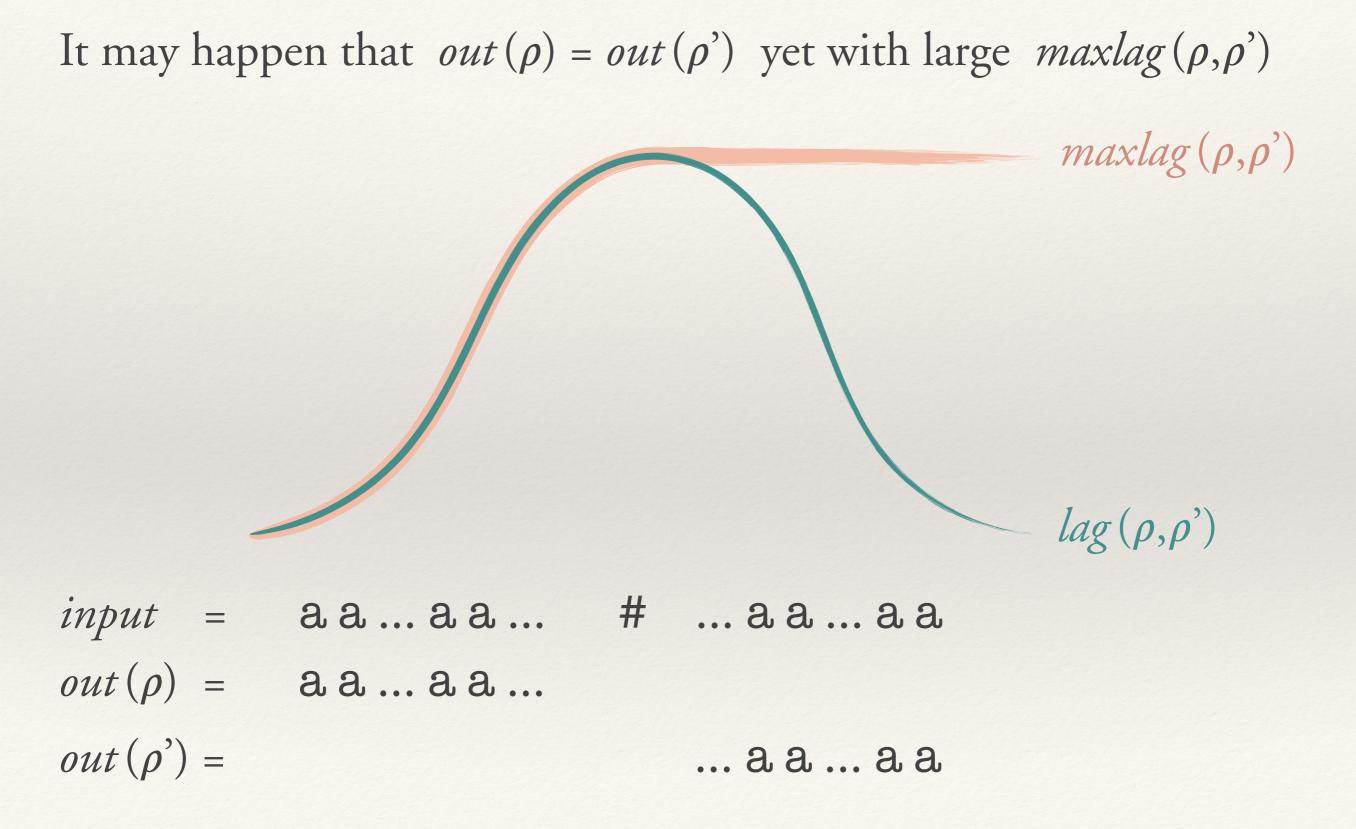
$$align(\rho,\rho') = \begin{cases} (u,\varepsilon) : out(\rho) . u = out(\rho') \\ (\varepsilon,v) : out(\rho) = out(\rho') . v \end{cases}$$

 $lag(\rho, \rho') = |align(\rho, \rho')|$

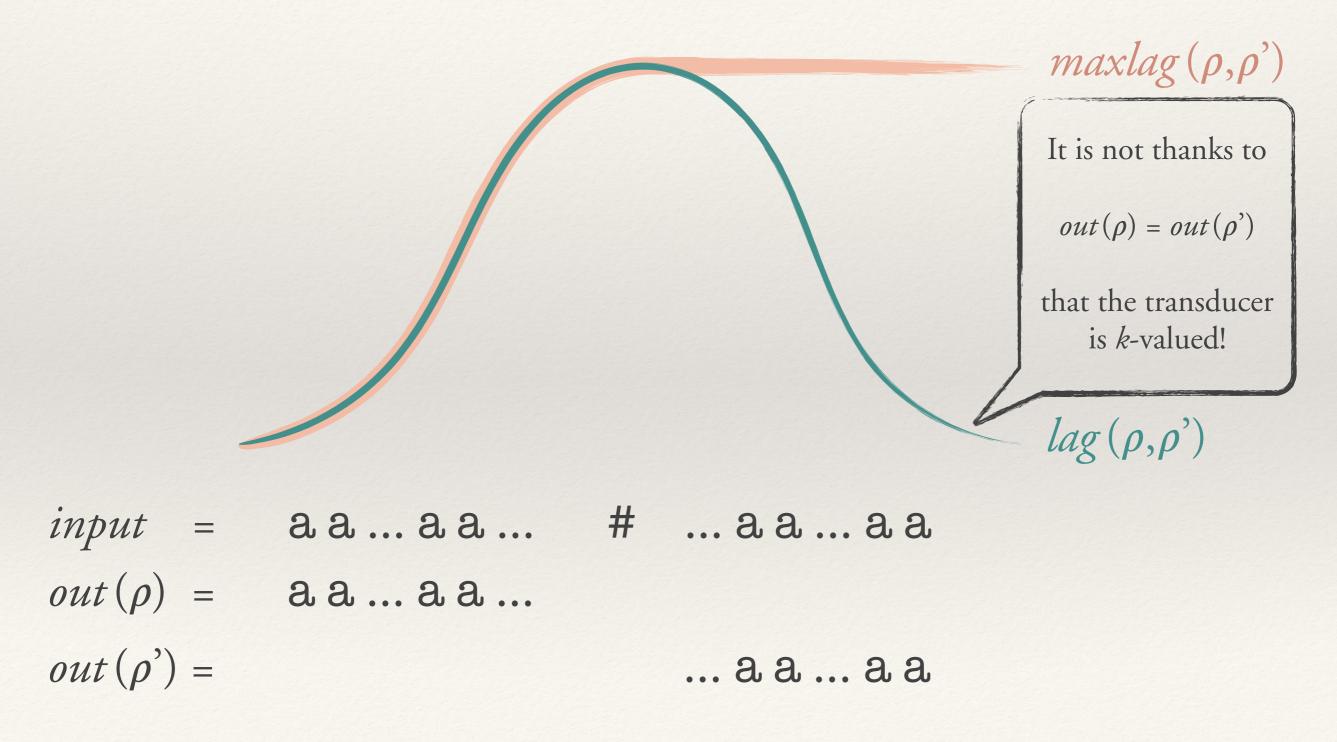
 $maxlag(\rho,\rho') = MAX \left\{ lag(\rho_{\leq t},\rho'_{\leq t}) : t \leq |\rho| \right\}$

It may happen that $out(\rho) = out(\rho')$ yet with large $maxlag(\rho, \rho')$

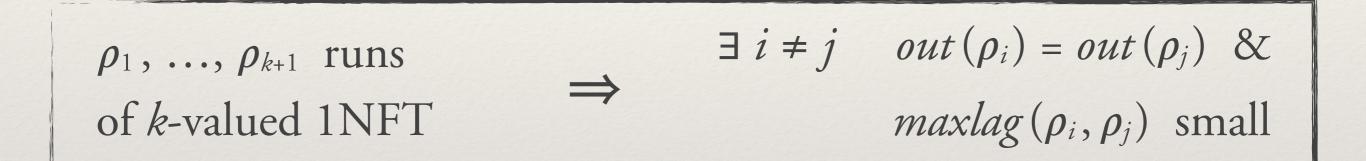
input = aa...aa... # ...aa...aa $<math>out(\rho) = aa...aa...$ $out(\rho') = ...aa...aa$



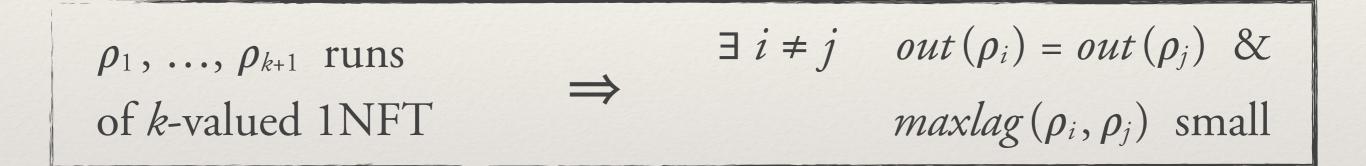
It may happen that $out(\rho) = out(\rho')$ yet with large $maxlag(\rho, \rho')$



Key combinatorial property:



Key combinatorial property:

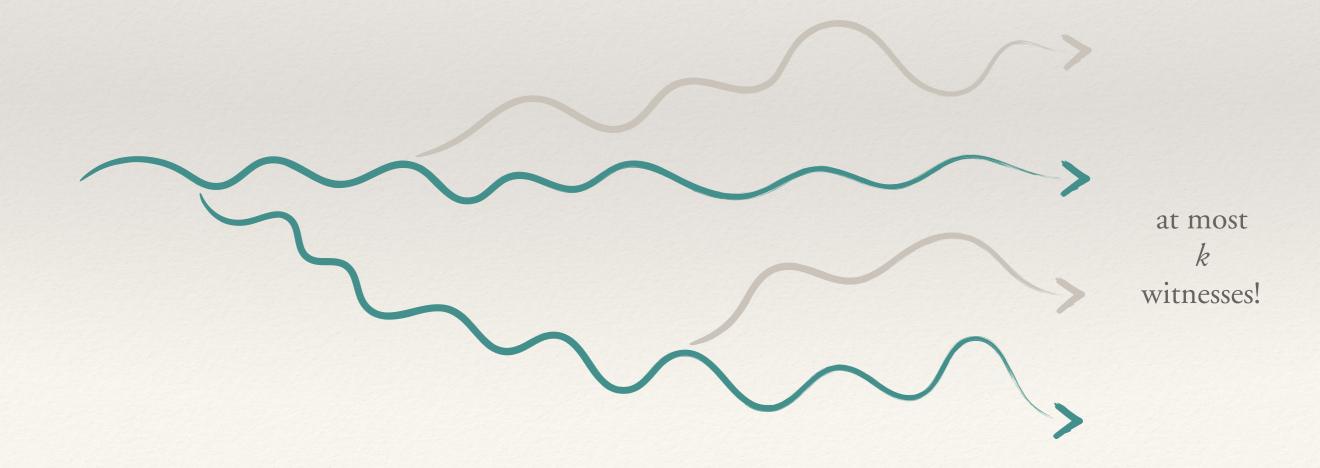


```
Moreover, if maxlag(\rho_i, \rho_j) is small
one can maintain align(\rho_i, \rho_j) in bounded memory
— in particular, one knows whether out(\rho_i) = out(\rho_j)
```

One can simulate only the witness runs, namely, the ρ 's that are

successful

Iexico.-least among all other runs ρ' with $\begin{cases} out(\rho) = out(\rho') & \\ maxlag(\rho, \rho') & \\ maxlag$



Conjecture: every k-valued SST is a finite union of functional SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries:

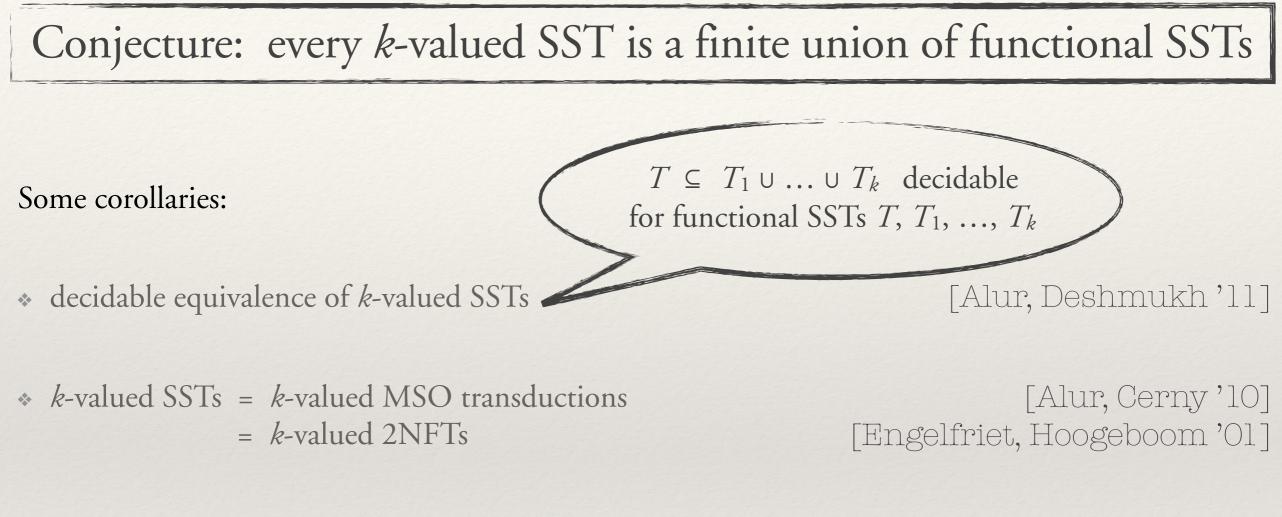
* decidable equivalence of k-valued SSTs

[Alur, Deshmukh '11]

* k-valued SSTs = k-valued MSO transductions = k-valued 2NFTs [Alur, Cerny '10] [Engelfriet, Hoogeboom '01]

effective characterisation of k-valued SSTs
 definable by k-valued 1NFTs

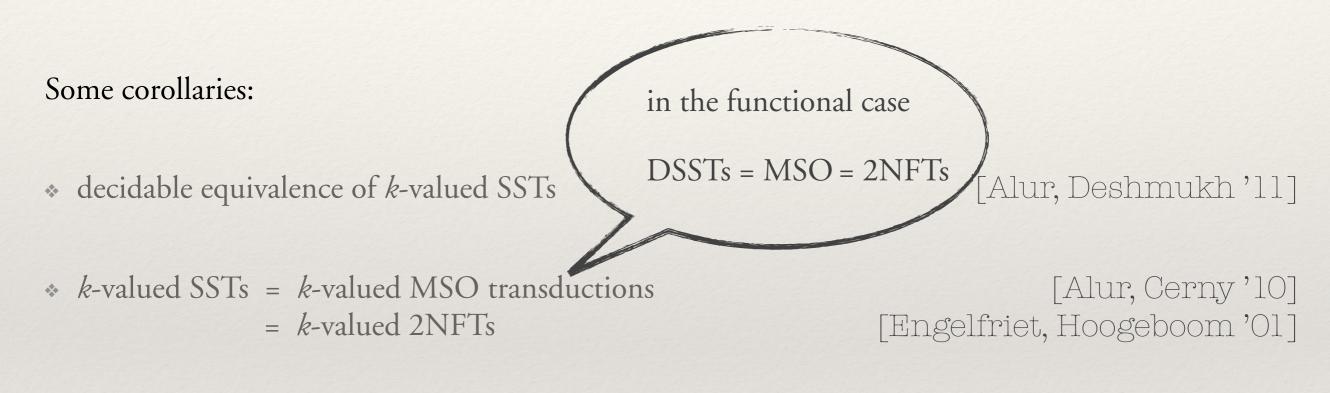
[Filiot, Gauwin, Reynier, Servais '13]



 effective characterisation of k-valued SSTs definable by k-valued 1NFTs

[Filiot, Gauwin, Reynier, Servais '13]

Conjecture: every k-valued SST is a finite union of functional SSTs



 effective characterisation of k-valued SSTs definable by k-valued 1NFTs

[Filiot, Gauwin, Reynier, Servais '13]

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries:

* decidable equivalence of k-valued SSTs

[Alur, Deshmukh '11]

* k-valued SSTs = k-valued MSO transductions = k-valued 2NFTs

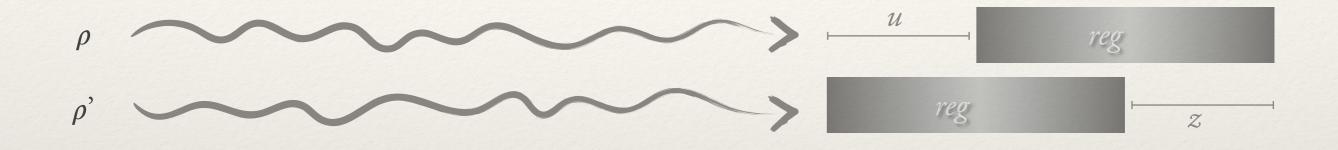
[Alur, Cerny '10] [Engelfriet, Hoogeboom '01]

 effective characterisation of k-valued SSTs definable by k-valued 1NFTs

[Filiot, Gauwin, Reynier, Servais '13]

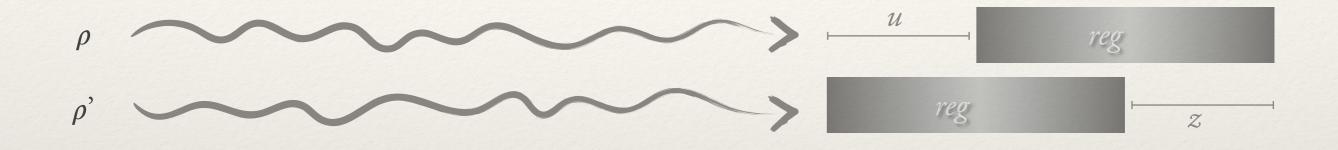
Our contribution: we proved the conjecture for SSTs with 1 register

First difficulty: letters added to left and right of register \Rightarrow symmetric alignments on registers



$$align(\rho,\rho') = \left\{ \lambda = (u, v, w, z) : u \cdot reg(\rho) \cdot v = w \cdot reg(\rho') \cdot z \right\}$$

First difficulty: letters added to left and right of register \Rightarrow symmetric alignments on registers



$$align(\rho,\rho') = \left\{ \lambda = (u, v, w, z) : u \cdot reg(\rho) \cdot v = w \cdot reg(\rho') \cdot z \right\}$$

 $lag(\rho,\rho') = MIN \{ |\lambda| : \lambda \in align(\rho,\rho') \}$

First difficulty: letters added to left and right of register \Rightarrow symmetric alignments on registers

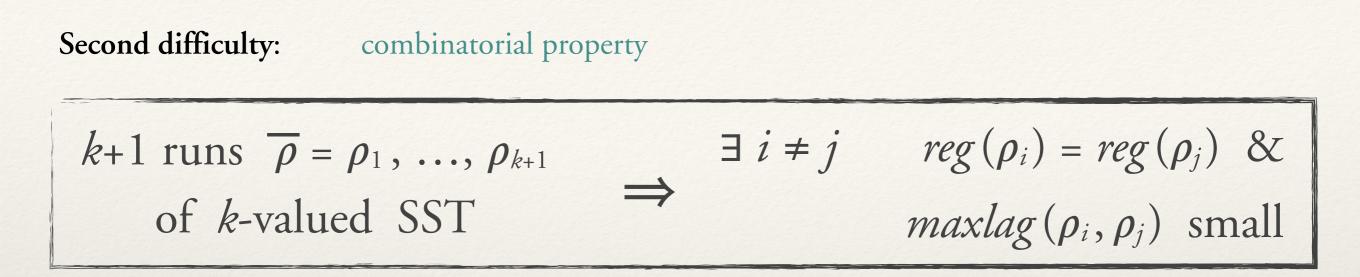


$$align(\rho,\rho') = \left\{ \lambda = (u, v, w, z) : u \cdot reg(\rho) \cdot v = w \cdot reg(\rho') \cdot z \right\}$$

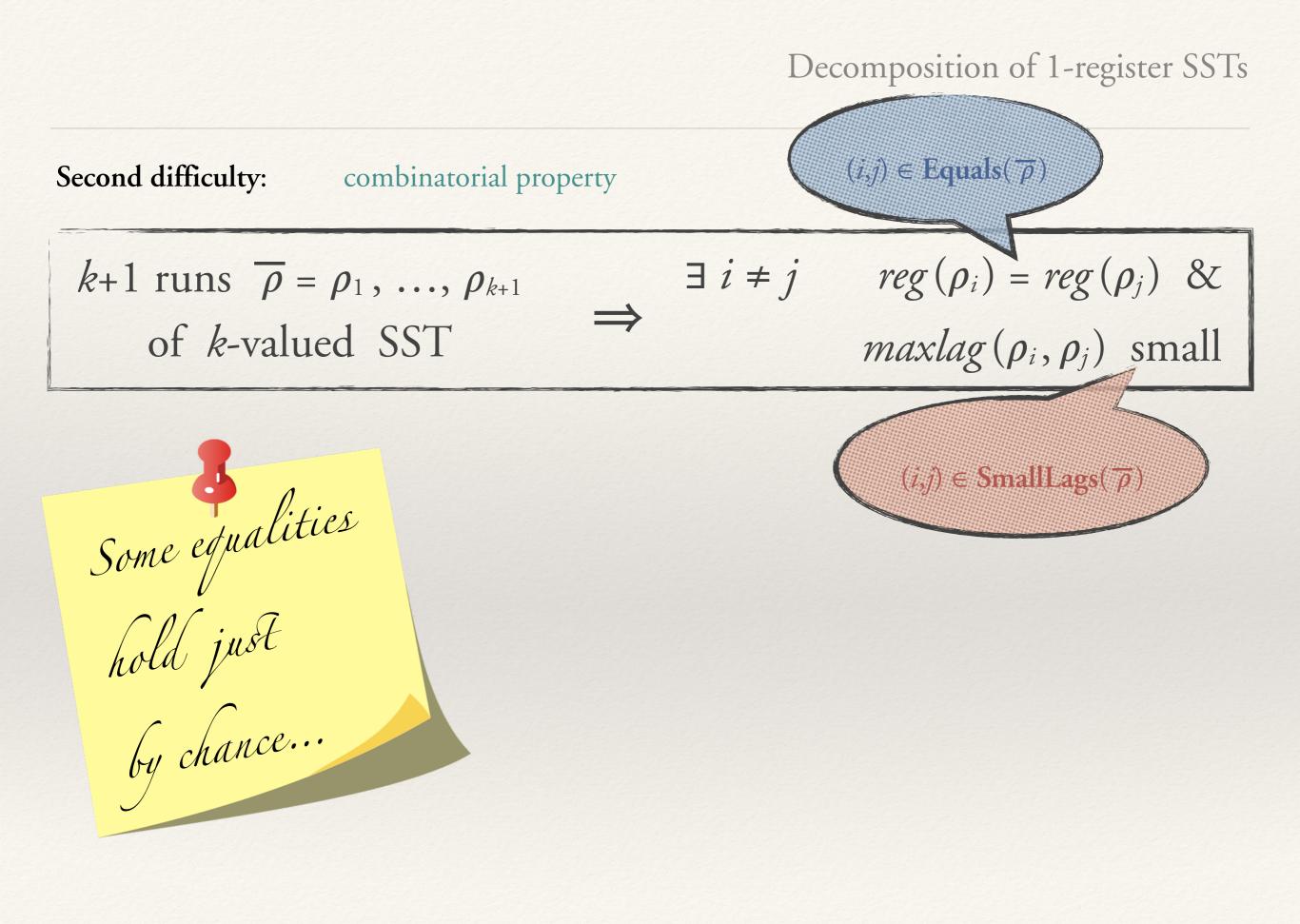
 $lag(\rho,\rho') = MIN \left\{ |\lambda| : \lambda \in align(\rho,\rho') \right\}$

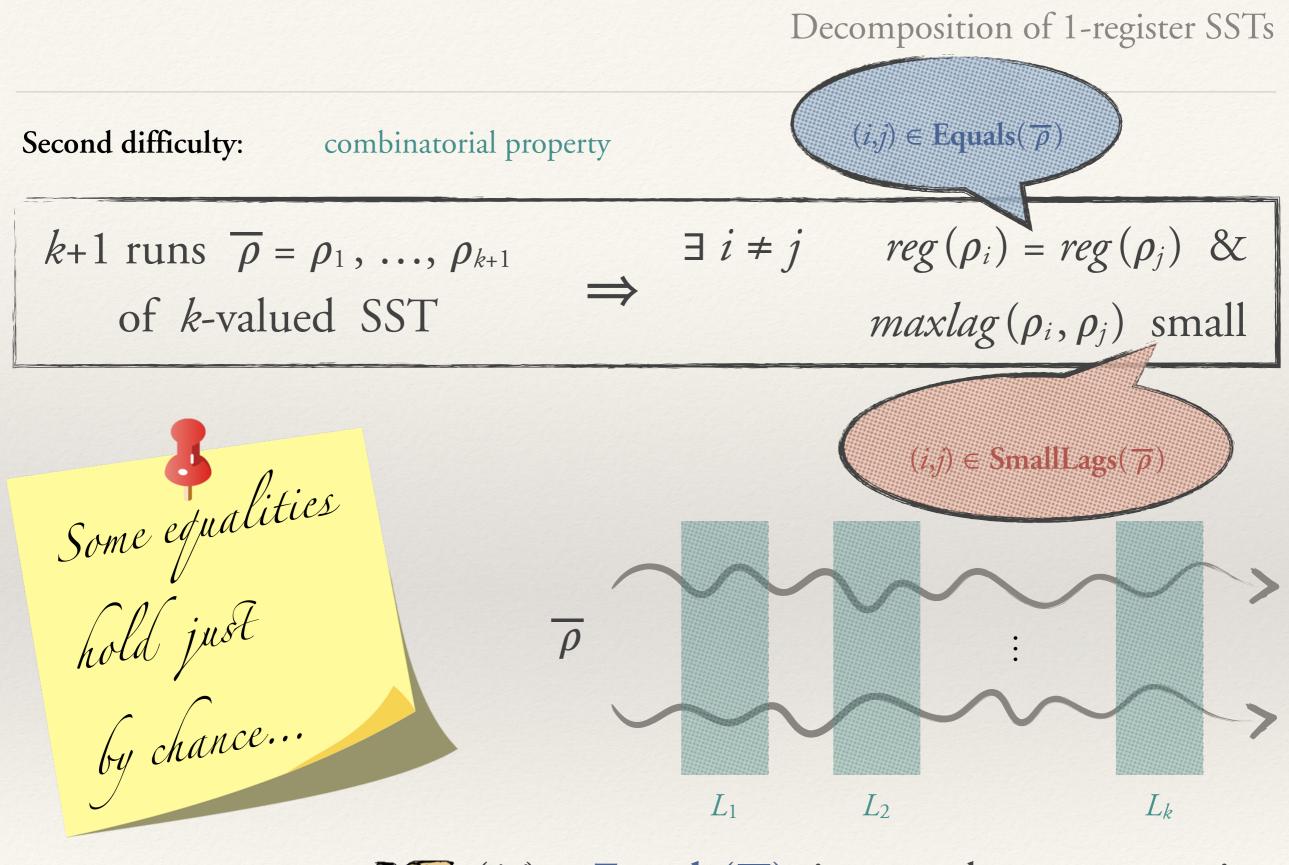
 $maxlag(\rho,\rho') = MAX \left\{ lag(\rho_{\leq t},\rho'_{\leq t}) : t \leq |\rho| \right\}$

Decomposition of 1-register SSTs

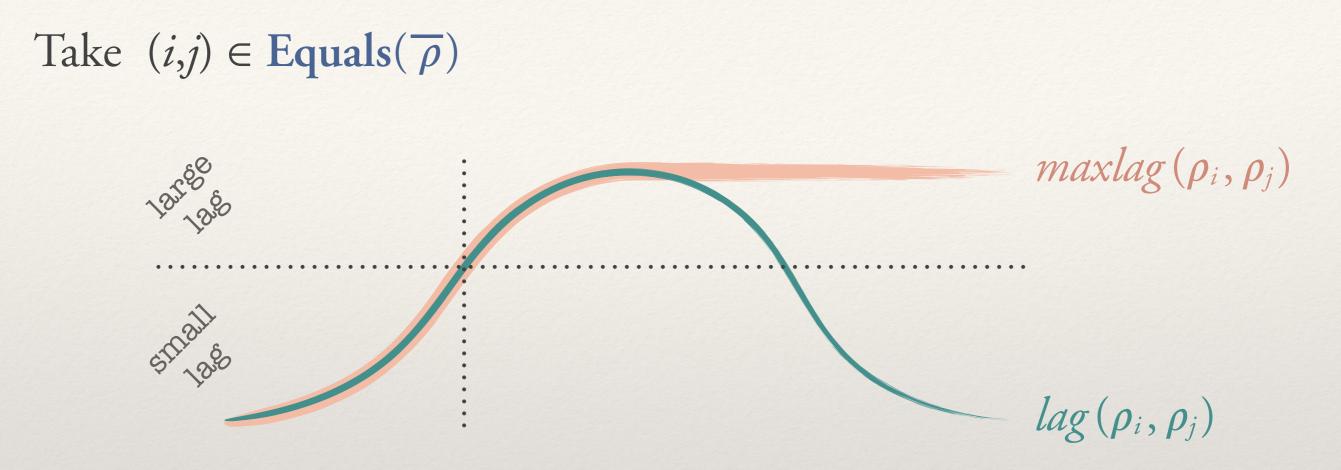


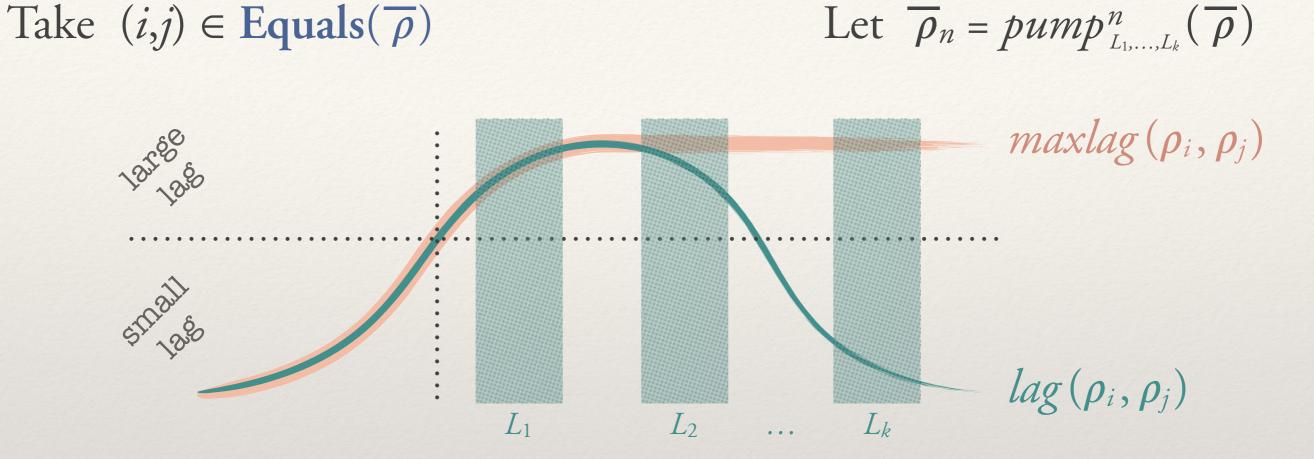
Some equalities hold just by chance...

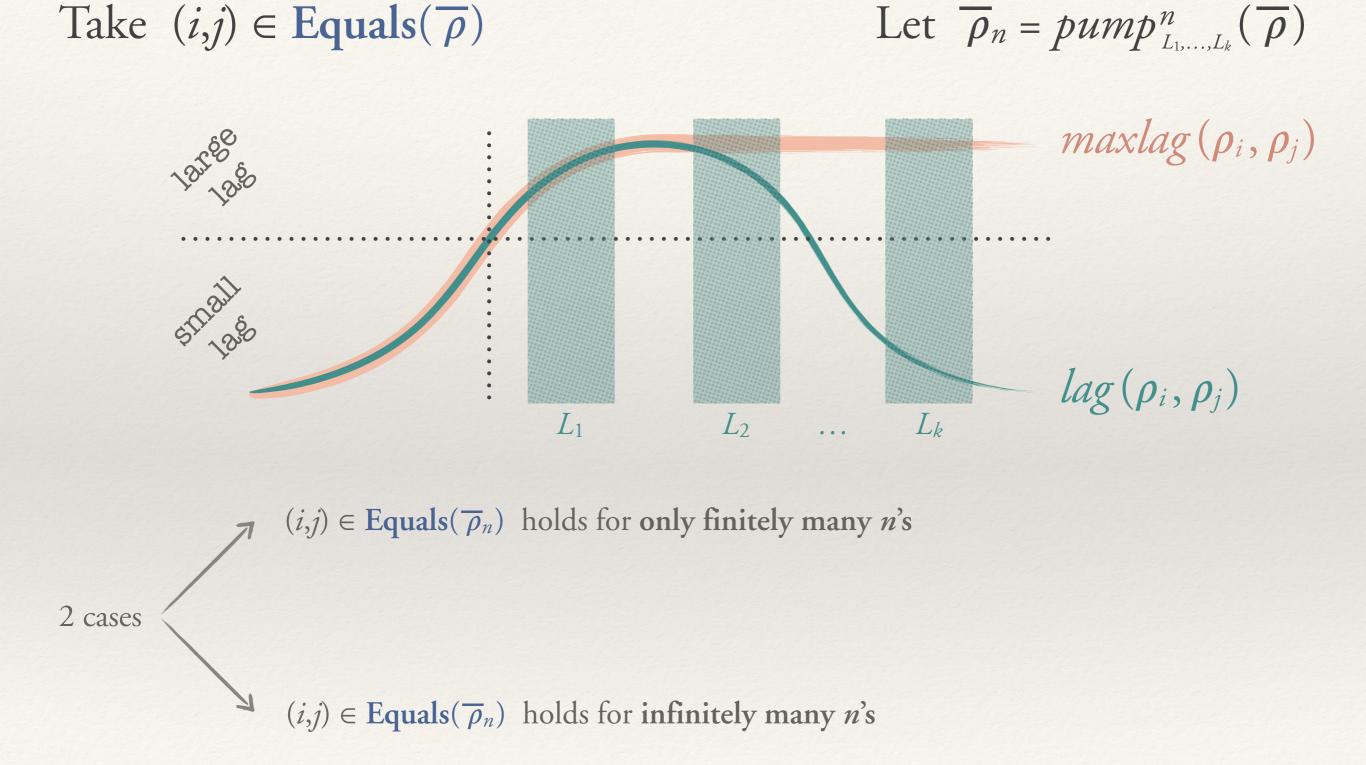


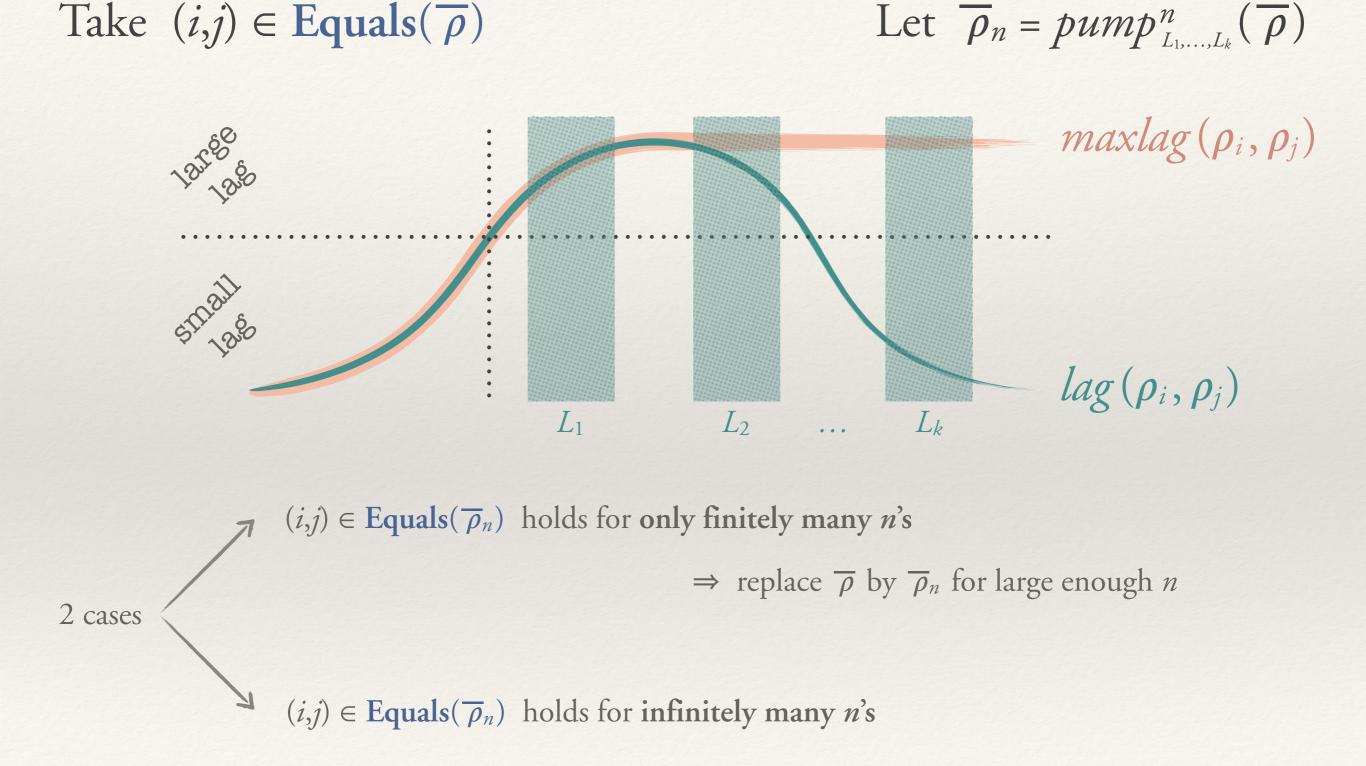


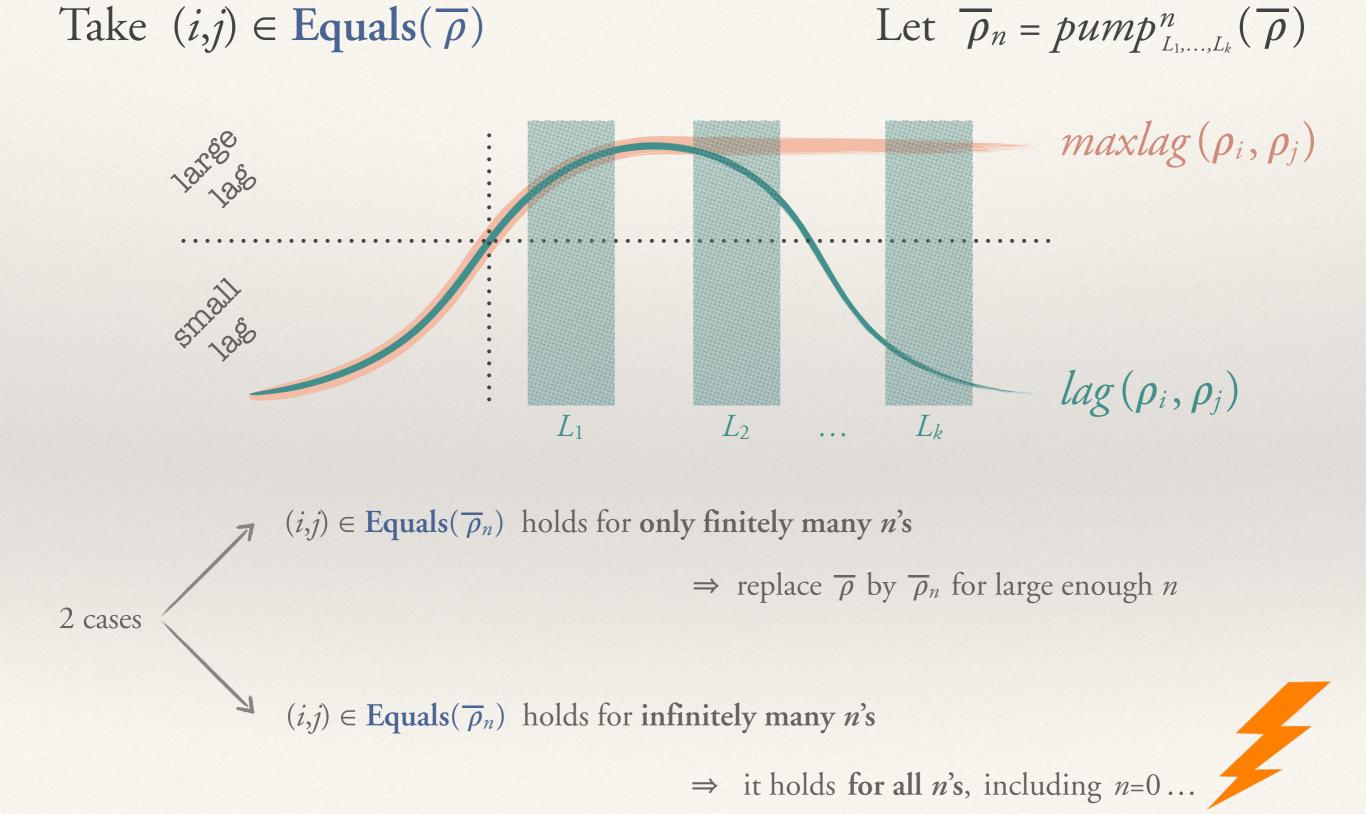
 $(i,j) \in Equals(\overline{\rho})$ is not robust to pumping

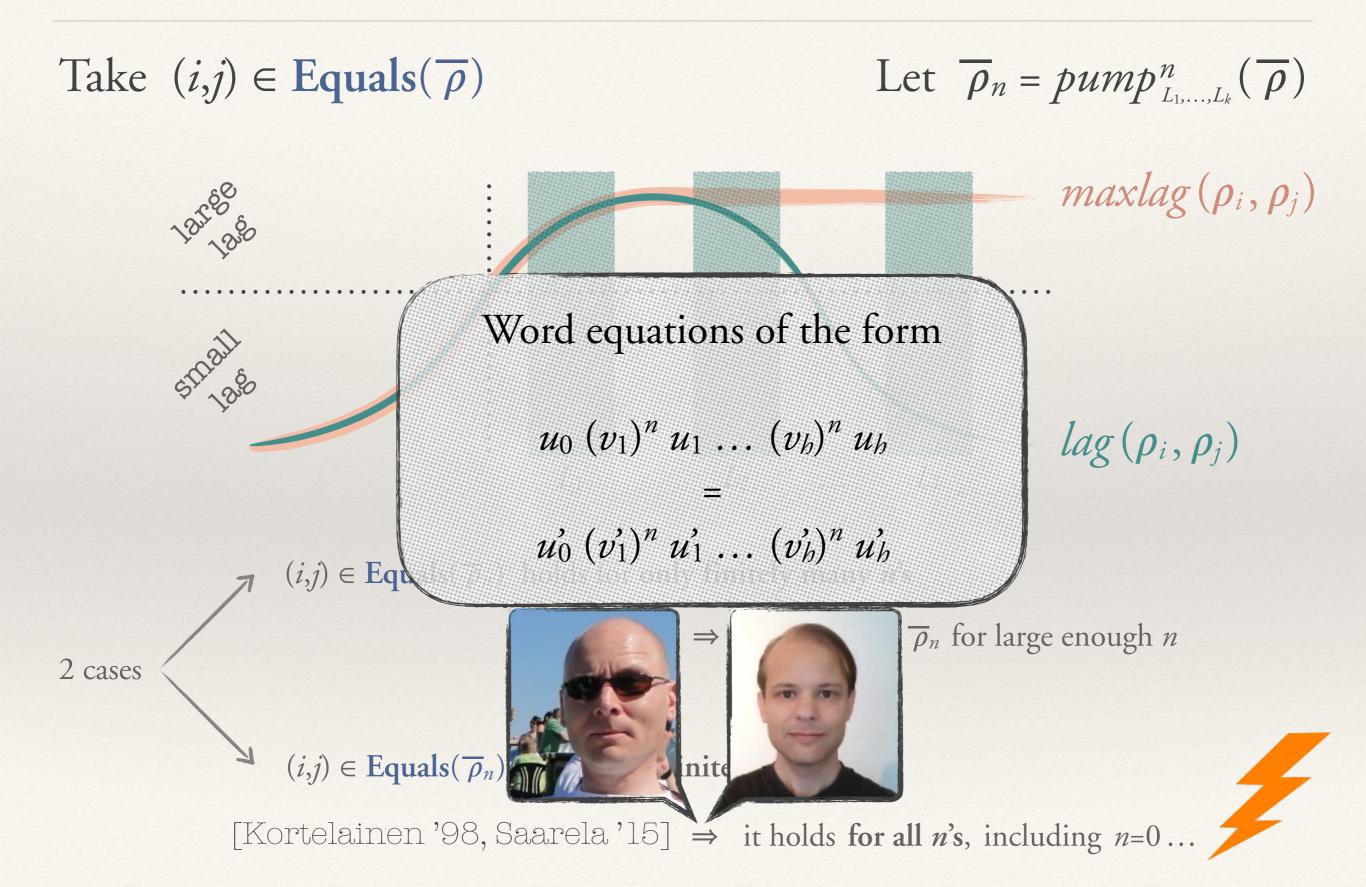


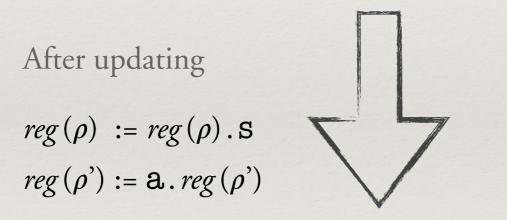


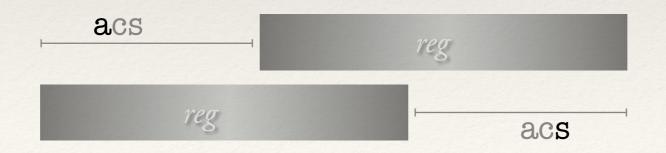


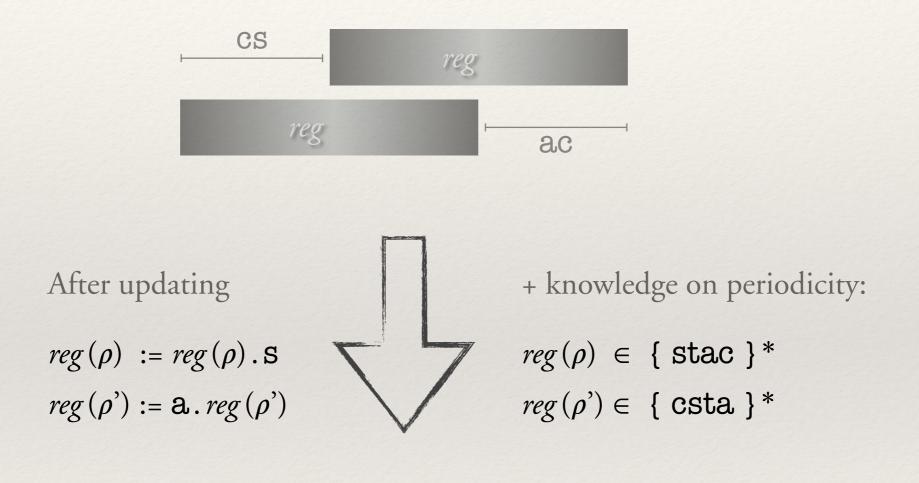


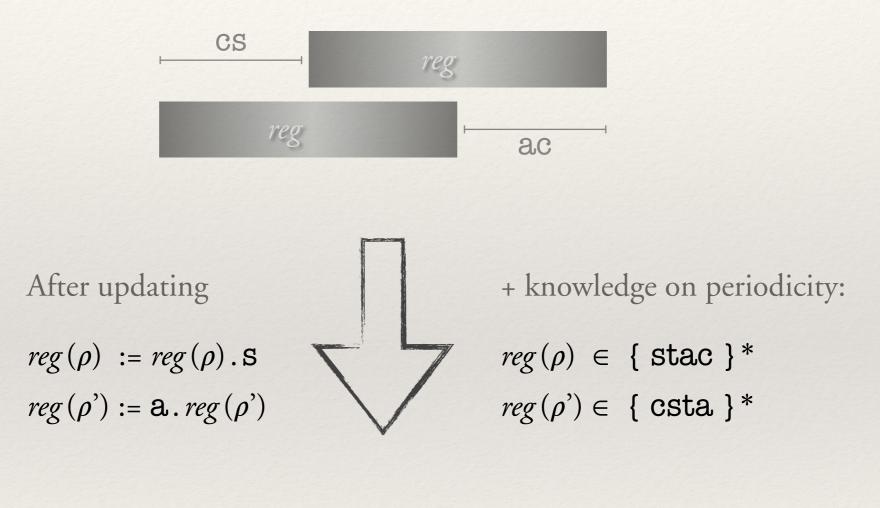












Theorem

Every k-valued SST with 1 register is a union of k functional SSTs.

Corollary Equivalence problem for *k*-valued SSTs with 1 register is decidable.

A first steps towards a decomposition theorem for SSTs with many registers...

Managed to prove the combinatorial property with many registers:

$\rho_1,, \rho_{k+1}$ runs	$\exists i \neq j$	$out(\rho_i) = out(\rho_j) \&$
of <i>k</i> -valued SST \Rightarrow		$maxlag(\rho_i, \rho_j)$ small

Managed to prove the combinatorial property with many registers:

$\rho_1, \ldots, \rho_{k+1}$ runs	$\exists i \neq j$	$out(\rho_i) = out(\rho_j) \&$
of <i>k</i> -valued SST \Rightarrow		$maxlag(\rho_i, \rho_j)$ small

Idea:

- 1. not all loops induce repetitions of factors in the registers
- 2. those that do not induce repetitions can be simulated with less registers
- 3. word equations + induction on number of registers...

Beyond the 1-register case

$maxlag(\rho_i, \rho_j) \text{ small} \implies align(\rho_i, \rho_j) \text{ maintainable} \\ in bounded memory$

